Cambridge
International
AS \& A Level

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

9709/13
Paper 1
May/June 2017
MARK SCHEME
Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

PUBLISHED

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	$7 \mathrm{C} 1 \times 2^{6} \times a(x), 7 \mathrm{C} 2 \times 2^{5} \times[a(x)]^{2}$	B1 B1	SOI Can be part of expansion. Condone $a x^{2}$ only if followed by a^{2}. ALT $\quad 2^{7}[1+a x / 2]^{7} \rightarrow 7 C 1[a(x) / 2]=7 C 2[a(x) / 2]^{2}$
	$a=\frac{7 \times 2^{6}}{21 \times 2^{5}}=\frac{2}{3}$	B1	Ignore extra soln $a=0$. Allow $a=0.667$. Do not allow an extra x in the answer
		3	

Question	Answer	Marks	Guidance
2(i)	$S=\frac{r^{2}-3 r+2}{1-r}$	M1	
	$\begin{aligned} & S=\frac{(r-1)(r-2)}{1-r}=\frac{-(1-r)(r-2)}{1-r}=2-r \mathrm{OR} \\ & \frac{(1-r)(2-r)}{1-r}=2-r \mathrm{OE} \end{aligned}$	A1	AG Factors must be shown. Expressions requiring minus sign taken out must be shown
	Total:	2	
2(ii)	Single range $1<S<3$ or (1,3)	B2	Accept $1<2-r<3$. Correct range but with $S=2$ omitted scores SR B1 $1 \leqslant S \leqslant 3$ scores SR B1. $[S>1 \text { and } S<3] \text { scores SR B1. }$
	Total:	2	

Question	Answer	Marks	Guidance
3	EITHER Elim y to form 3-term quad eqn in $x^{1 / 3}$ (or u or y or even x)	(M1	Expect $x^{2 / 3}-x^{1 / 3}-2(=0)$ or $u^{2}-u-2(=0)$ etc.
	$x^{1 / 3}($ or u or y or $x)=2,-1$	*A1	Both required. But $\underline{\boldsymbol{x}}=2,-1$ and not then cubed or cube rooted scores A0
	Cube solution(s)	DM1	Expect $x=8,-1$. Both required
	$(8,3),(-1,0)$	A1)	
	OR Elim x to form quadratic equation in y	(M1	Expect $y+1=(y-1)^{2}$
	$y^{2}-3 y=0$	*A1	
	Attempt solution	DM1	Expect $y=3,0$
	$(8,3),(-1,0)$	A1)	
	Total:	4	

Question	Answer	Marks	Guidance
4(i)	$\overrightarrow{O B}-\overrightarrow{O A}(=\overrightarrow{A B})=\left(\begin{array}{c}5 \\ 4 \\ -3\end{array}\right)-\left(\begin{array}{l}5 \\ 1 \\ 3\end{array}\right)=\left(\begin{array}{c}0 \\ 3 \\ -6\end{array}\right)$	B1	
	$\overrightarrow{O P}=\left(\begin{array}{l}5 \\ 1 \\ 3\end{array}\right)+\frac{1}{3}\left(\begin{array}{c}0 \\ 3 \\ -6\end{array}\right)=\left(\begin{array}{l}5 \\ 2 \\ 1\end{array}\right)$	M1 A1	If $\overrightarrow{O P}$ not scored in (i) can score SR B1 if seen correct in (ii). Other equivalent methods possible
	Total:	3	
4(ii)	Distance $O P=\sqrt{5^{2}+2^{2}+1^{2}}=\sqrt{30}$ or 5.48	B1 FT	FT on their $\overrightarrow{O P}$ from (i)
	Total:	1	
4(iii)	Attempt $\overrightarrow{A B} \cdot \overrightarrow{O P}$. Can score as part of $\overrightarrow{A B} \cdot \overrightarrow{O P}=(A B)(O P) \cos \theta$ Rare ALT: Pythagoras $\|\overrightarrow{O P}\|^{2}+\|\overrightarrow{A P}\|^{2}=5+30=\|\overrightarrow{O A}\|^{2}$	M1	Allow any combination of $\overrightarrow{A B} \cdot \overrightarrow{P O}$ etc. and also if $\overrightarrow{A P}$ or $\overrightarrow{P B}$ used instead of $\overrightarrow{A B}$ giving 2-2 $=0 \& 4-4=0$ respectively. Allow notation \times instead of.
	$(0+6-6)=0$ hence perpendicular. (Accept 90°)	A1 FT	If result not zero then 'Not perpendicular' can score A1FT if value is 'correct' for their values of $\overrightarrow{A B}, \overrightarrow{O P}$ etc. from (i).
	Total:	2	

Question	Answer	Marks	Guidance
5(i)	$\frac{2 \sin \theta+\cos \theta}{\sin \theta+\cos \theta}=\frac{2 \sin \theta}{\cos \theta}$	M1	Replace $\tan \theta$ by $\sin \theta / \cos \theta$
	$2 \sin \theta \cos \theta+\cos ^{2} \theta=2 \sin ^{2} \theta+2 \sin \theta \cos \theta \Rightarrow c^{2}=2 s^{2}$	M1 A1	Mult by $\mathrm{c}(\mathrm{s}+\mathrm{c})$ or making this a common denom.. For A1 simplification to AG without error or omission must be seen.
	Total:	3	
5(ii)	$\tan ^{2} \theta=1 / 2$ or $\cos ^{2} \theta=2 / 3$ or $\sin ^{2} \theta=1 / 3$	B1	Use $\tan \theta=s / \mathrm{c}$ or $\mathrm{c}^{2}+\mathrm{s}^{2}=1$ and simplify to one of these results
	$\theta=35.3^{\circ}$ or 144.7°	B1 B1 FT	FT for 180 - other solution. SR B1 for radians $0.615,2.53(0.196 \pi, 0.804 \pi)$ Extra solutions in range amongst solutions of which 2 are correct gets B1B0
	Total:	3	

Question	Answer	Marks	Guidance
6	Gradient of normal is $-1 / 3 \rightarrow$ gradient of tangent is 3 SOI	B1 B1 FT	FT from their gradient of normal.
	$\mathrm{d} y / \mathrm{d} x=2 x-5=3$	M1	Differentiate and set = their 3 (numerical).
	$x=4$	*A1	
	Sub $x=4$ into line $\rightarrow y=7 \&$ sub their $(4,7)$ into curve	DM1	OR sub $x=4$ into curve $\rightarrow y=k-4$ and sub their $(4, k-4)$ into line OR other valid methods deriving a linear equation in k (e.g. equating curve with either normal or tangent and sub $x=4$).
	$k=11$	A1	
	Total:	6	

Question	Answer	Marks	Guidance
7(i)	$\sin A B C=8 / 10 \rightarrow A B C=0.927(3)$	B1	Or $\cos =6 / 10$ or $\tan =8 / 6$. Accept 0.295π.
	Total:	1	
7(ii)	$A B=6($ Pythagoras $) \rightarrow \triangle B C D=8 \times 6=48.0$	M1A1	OR $8 \times 10 \sin 0.6435$ or $1 / 2 \times 10 \times 10 \sin ((2) \times 0.927)=48.24$ or 40 or 80 gets M1A0
	Area sector $B C D=1 / 2 \times 10^{2} \times(2) \times$ their 0.9273	*M1	Expect 92.7(3). 46.4 gets M1
	Area segment $=92.7(3)-48$	*A1	Expect 44.7(3). Might not appear until final calculation.
	Area semi-circle - segment $=1 / 2 \times \pi \times 8^{2}-\operatorname{their}(92.7-48)$	DM1	Dep. on previous M1A1 OR $\pi \times 8^{2}-\left(1 / 2 \times \pi \times 8^{2}+\right.$ their 44.7$)$.
	Shaded area $=55.8-56.0$	A1	
	Total:	6	

Question	Answer	Marks	Guidance
8(i)	$(b-1) /(a+1)=2$	M1	OR Equation of $A P$ is $y-1=2(x+1) \rightarrow y=2 x+3$
	$b=2 a+3 \mathrm{CAO}$	A1	Sub $x=a, y=b \rightarrow b=2 a+3$
	Total:	2	
8(ii)	$A B^{2}=11^{2}+2^{2}=125$ oe	B1	Accept $A B=\sqrt{ } 125$
	$(a+1)^{2}+(b-1)^{2}=125$	B1 FT	FT on their 125.
	$(a+1)^{2}+(2 a+2)^{2}=125$	M1	Sub from part (i) \rightarrow quadratic eqn in a (or possibly in $b \rightarrow b^{2}-2 b-99=0$)
	$(5)\left(a^{2}+2 a-24\right)=0 \rightarrow \operatorname{eg}(a-4)(a+6)=0$	M1	Simplify and attempt to solve
	$a=4$ or -6	A1	
	$b=11$ or -9	A1	OR $(4,11),(-6,-9)$ If A0A0, SR1 for either $(4,11)$ or $(-6,-9)$
	Total:	6	

Question	Answer	Marks	Guidance
9(i)	$(3 x-1)^{2}+5$	B1B1B1	First 2 marks dependent on correct $(a x+b)^{2}$ form. OR $a=3, b=-1, c=5$ e.g. from equating coefs
	Total:	3	
9(ii)	Smallest value of p is $1 / 3$ seen. (Independent of (i))	B1	Allow $p \geqslant 1 / 3$ or $p=1 / 3$ or $1 / 3$ seen. But not in terms of x.
	Total:	1	
9 (iii)	$y=(3 x-1)^{2}+5 \Rightarrow 3 x-1=(\pm) \sqrt{y-5}$	B1 FT	OR $y=9\left(x-\frac{1}{3}\right)^{2}+5 \Rightarrow(y-5) / 9=\left(x-\frac{1}{3}\right)^{2}($ Fresh start $)$
	$x=(\pm) 1 / 3 \sqrt{y-5}+1 / 3 \mathrm{OE}$	B1 FT	Both starts require 2 operations for each mark. FT for their values from part (i)
	$\mathrm{f}^{-1}(x)=1 / 3 \sqrt{x-5}+1 / 3$ OE domain is $x \geq$ their 5	B1B1 FT	Must be a function of x and \pm removed. Domain must be in terms of x. Note: $\sqrt{y-5}$ expressed as $\sqrt{y}-\sqrt{5}$ scores Max B0B0B0B1 [See below for general instructions for different starts]
	Total:	4	
9(iv)	$q<5 \mathrm{CAO}$	B1	
	Total:	1	
Alt 9(iii) For start $(a x-b)^{2}+c$ or $a(x-b)^{2}+c \quad(a \neq 0) \mathrm{ft}$ for their a, b, c For start $(x-b)^{2}+c$ ft but award only $\mathbf{B 1}$ for 3 correct operations For start $a(b x-c)^{2}+d \mathrm{ft}$ but award $\mathbf{B} 1$ for first2 operations correct and $\mathbf{B} 1$ for the next 3 operations correct	For start $(a x-b)^{2}+c$ or $a(x-b)^{2}+c(a \neq 0) \mathrm{ft}$ for their a, b, c For start $(x-b)^{2}+c$ ft but award only $\mathbf{B 1}$ for 3 correct operations For start $a(b x-c)^{2}+d \mathrm{ft}$ but award $\mathbf{B} 1$ for first2 operations correct and $\mathbf{B} 1$ for the next 3 operations correct		

Question	Answer			Marks	Guidance
10(a)(i)	Attempt to integrate $V=(\pi) \int(y+1) \mathrm{d} y$			M1	Use of h in integral e.g. $\int(h+1)=1 / 2 h^{2}+h$ is M0. Use of $\int y^{2} \mathrm{~d} x$ is M0
	$=(\pi)\left[\frac{y^{2}}{2}+y\right]$			A1	
	$=\pi\left[\frac{h^{2}}{2}+h\right]$			A1	AG. Must be from clear use of limits $0 \rightarrow h$ somewhere.
	Total:			3	
10(ii)	$\int(y+1)^{1 / 2} \mathrm{~d} y$	ALT	$6-\int\left(x^{2}-1\right) \mathrm{d} x$	M1	Correct variable and attempt to integrate
	$2 / 3(y+1)^{3 / 2}$ oe	ALT	$6-\left(1 / 3 x^{3}-x\right) \mathrm{CAO}$	*A1	Result of integration must be shown
	2/3[8-1]	ALT	$6-\left[\left(\frac{8}{3}-1\right)-\left(\frac{1}{3}-1\right)\right]$	DM1	Calculation seen with limits $0 \rightarrow 3$ for y. For ALT, limits are $1 \rightarrow 2$ and rectangle.
	14/3	ALT	$6-4 / 3=14 / 3$	A1	$16 / 3$ from $2 / 3 \times 8$ gets DM1A0 provided work is correct up to applying limits.
			Total:	4	

Question	Answer	Marks	
$10(\mathrm{~b})$	Clear attempt to differentiate wrt h	M1	Expect $\frac{\mathrm{d} V}{\mathrm{~d} h}=\pi(h+1)$. Allow $h+1$. Allow h.
	Derivative $=4 \pi$ SOI	*A1	
	$\frac{2}{\text { their } \text { derivative }} \cdot$ Can be in terms of h	DM1	
	$\frac{2}{4 \pi}$ or $\frac{1}{2 \pi}$ or 0.159	A1	

Question	Answer	Marks	Guidance
11(i)	$\mathrm{f}^{\prime}(x)=\left[(4 x+1)^{1 / 2} \div 1 / 2\right][\div 4](+c)$	B1 B1	Expect $11 / 2(4 x+1)^{1 / 2}(+c)$
	$\mathrm{f}^{\prime}(2)=0 \Rightarrow \frac{3}{2}+c=0 \Rightarrow c=-\frac{3}{2}$ (Sufficient)	B1 FT	Expect $1 / 2(4 x+1)^{1 / 2}-\frac{3}{2}$. FT on their $\mathrm{f}^{\prime}(x)=k(4 x+1)^{1 / 2}+c$. (i.e. $\left.c=-3 k\right)$
	Total:	3	
11(ii)	$\mathrm{f}^{\prime \prime}(0)=1 \mathrm{SOI}$	B1	
	$\mathrm{f}^{\prime}(0)=1 / 2-1 / 1 / 2=-1$ SOI	B1 FT	Substitute $x=0$ into their $\mathrm{f}^{\prime}(x)$ but must not involve c otherwise B0B0
	$f(0)=-3$	B1 FT	FT for 3 terms in AP. FT for 3rd B1 dep on 1st B1. Award marks for the AP method only.
	Total:	3	
11(iii)	$\mathrm{f}(x)=\left[1 / 2(4 x+1)^{3 / 2} \div 3 / 2 \div 4\right]-[11 / 2 x](+k)$	$\begin{aligned} & \text { B1 FT } \\ & \text { B1 FT } \end{aligned}$	Expect (1/12) $(4 x+1)^{3 / 2}-11 / 2 x(+k)$. FT from their $\mathrm{f}^{\prime}(x)$ but c numerical.
	$-3=1 / 12-0+k \Rightarrow k=-37 / 12 \mathrm{CAO}$	M1A1	Sub $x=0, y=$ their $\mathrm{f}(0)$ into their $\mathrm{f}(x)$. Dep on $c x \& k$ present (c numerical)
	$\text { Minimum value }=\mathrm{f}(2)=\frac{27}{12}-3-\frac{37}{12}=-\frac{23}{6} \text { or }-3.83$	A1	
	Total:	5	

